GEOMETRY

Facts (With Abbreviations Used in Grades 4–9)	Diagram/Example	How to State as a Reason in an Exercise or a Proof	
Vertical angles are equal in measure. (vert. ∠s)	$a^{\circ} = b^{\circ}$	"Vertical angles are equal in measure."	
If C is a point in the interior of $\angle AOB$, then $m \angle AOC + m \angle COB = m \angle AOB$. (\angle s add)	$m \angle AOB = m \angle AOC + m \angle COB$	"Angle addition postulate"	
Two angles that form a linear pair are supplementary. (∠s on a line)	$a^{\circ} - b^{\circ} = 180$	"Linear pairs form supplementary angles."	
Given a sequence of n consecutive adjacent angles whose interiors are all disjoint such that the angle formed by the first $n - 1$ angles and the last angle are a linear pair, then the sum of all of the angle measures is 180°. ($\angle s$ on a line)	$a^{\circ} + b^{\circ} + c^{\circ} + d^{\circ} = 180$	"Consecutive adjacent angles on a line sum to 180°."	
The sum of the measures of all angles formed by three or more rays with the same vertex and whose interiors do not overlap is 360° . (\angle s at a point)	A = B = C = C = C = C = C = C = C = C = C		

Key Facts and Discoveries from Earlier Grades

engage^{ny}

49

GEOMETRY

Facts (With Abbreviations Used in Grades 4–9)	Diagram/Example	How to State as a Reason in an Exercise or a Proof	
The sum of the 3 angle measures of any triangle is 180° . (\angle sum of \triangle)	$m \angle A + m \angle B + m \angle C = 180^{\circ}$	"The sum of the angle measures in a triangle is 180°."	
When one angle of a triangle is a right angle, the sum of the measures of the other two angles is 90°. (\angle sum of rt. \triangle)	B A $A = 90^{\circ}; m \angle B + m \angle C = 90^{\circ}$	"Acute angles in a right triangle sum to 90°."	
The sum of each exterior angle of a triangle is the sum of the measures of the opposite interior angles, or the remote interior angles. (ext. \angle of \triangle)	$A = m \angle BAC + m \angle ABC = m \angle BCD$	"The exterior angle of a triangle equals the sum of the two opposite interior angles."	
Base angles of an isosceles triangle are equal in measure. (base ∠s of isos. △)		"Base angles of an isosceles triangle are equal in measure."	
All angles in an equilateral triangle have equal measure. (equilat. △)		"All angles in an equilateral triangle have equal measure."	

engage^{ny}

50

GEOMETRY

Facts (With Abbreviations Used in Grades 4–9)	Diagram/Example	How to State as a Reason in an Exercise or a Proof	
If two parallel lines are intersected by a transversal, then corresponding angles are equal in measure. (corr. \angle s, $\overline{AB} \mid\mid \overline{CD}$)		"If parallel lines are cut by a transversal, then corresponding angles are equal in measure."	
If two lines are intersected by a transversal such that a pair of corresponding angles are equal in measure, then the lines are parallel. (corr. ∠s converse)		"If two lines are cut by a transversal such that a pair of corresponding angles are equal in measure, then the lines are parallel."	
If two parallel lines are intersected by a transversal, then interior angles on the same side of the transversal are supplementary. (int. \angle s, $\overline{AB} \parallel \overline{CD}$)		"If parallel lines are cut by a transversal, then interior angles on the same side are supplementary."	
If two lines are intersected by a transversal such that a pair of interior angles on the same side of the transversal are supplementary, then the lines are parallel. (int. ∠s converse)		"If two lines are cut by a transversal such that a pair of interior angles on the same side are supplementary, then the lines are parallel."	
If two parallel lines are intersected by a transversal, then alternate interior angles are equal in measure. (alt. \angle s, $\overline{AB} \overline{CD}$)		"If parallel lines are cut by a transversal, then alternate interior angles are equal in measure."	
If two lines are intersected by a transversal such that a pair of alternate interior angles are equal in measure, then the lines are parallel. (alt. ∠s converse)		"If two lines are cut by a transversal such that a pair of alternate interior angles are equal in measure, then the lines are parallel."	

U1

Property	Meaning	Geometry Example	Diagram
Reflexive Property	A quantity is equal to itself.	AB = AB	
Transitive Property	If two quantities are equal to the same quantity, then they are equal to each other.	If $AB = BC$ and $BC = EF$, then $AB = EF$.	
Symmetric Property	If a quantity is equal to a second quantity, then the second quantity is equal to the first.	If $OA = AB$ then $AB = OA$.	
Addition Property of Equality	If equal quantities are added to equal quantities, then the sums are equal.	If $AB = DF$ and $BC = CD$, then $AB + BC = DF + CD$.	
Subtraction Property of Equality	If equal quantities are subtracted from equal quantities, the differences are equal.	If $AB + BC = CD + DE$ and $BC = DE$, then $AB = CD$.	
Multiplication Property of Equality	If equal quantities are multiplied by equal quantities, then the products are equal.	If $m \angle ABC = m \angle XYZ$ then $2(m \angle ABC) = 2(m \angle XYZ).$	
Division Property of Equality	If equal quantities are divided by equal quantities, then the quotients are equal.	If $AB = XY$ then $\frac{AB}{2} = \frac{XY}{2}$.	
Substitution Property of Equality	A quantity may be substituted for its equal.	If $DE + CD = CE$ and $CD = AB$, then $DE + AB = CE$.	
Partition Property (includes "Angle Addition Postulate," "Segments add," "Betweenness of Points," etc.)	A whole is equal to the sum of its parts.	If point <i>C</i> is on \overline{AB} , then $AC + CB = AB$.	

Basic Properties Reference Chart

52